CAREER BLITZ A Responsible Education Management Company								
Subjec	t: Chemistry	Class: XI	HW: 01	Date: 20-06-2015	Course: IGNITE			
		1. S	ome basic cor	cept of chemistry				
		Mult	tiple Choice Quest	ions (Type-I)				
1.	Two students perform which are given below of the following staten Student Rea (i) A 3.01 B 3.05 (i) Results of both the (ii) Results of student (iii) Results of student (iv) Results of student	ed the same e 2. Correct read nents. adings (ii) 2.99 2.95 students are no A are both pred B are neither p B are both pred	xperiment separat ing of mass is 3.0 either accurate no cise and accurate. precise nor accurat cise and accurate.	ely and each one of ther g. On the basis of given o r precise.	m recorded two readings of mass data, mark the correct option out			
2.	A measured temperate (i) 40 °C	ure on Fahrenł (ii) 94 °C	neit scale is 200 °F.	What will this reading be (iii) 93.3 °C	e on Celsius scale? (iv) 30 °C			
3. 4.	What will be the molar (i) 4 mol/ L If 500 mL of a 5M solur (i) 1.5 M	rity of a solutic (ii) 20 mol/ L tion is diluted (ii) 1.66 M	on, which contains to 1500 mL, what v	5.85 g of NaCl(s) per 500 (iii) 0.2 mol/ L will be the molarity of the (iii) 0.017 M	mL? (iv) 2 mol/ L e solution obtained? (iv) 1.59 M			
5.	The number of atoms element contains the g (i) 4g He	present in one greatest numb (ii) 46g Na	e mole of an elem er of atoms?	ent is equal to Avogadro (iii) 0.40g Ca	number. Which of the following (iv) 12g He			
6.	If the concentration of (i) 5 M	glucose (C ₆ H ₁₂ (ii) 50 M	₂O₅) in blood is 0.9	g L ⁻¹ , what will be the m (iii) 0.005 M	olarity of glucose in blood? (iv) 0.5 M			
7.	What will be the molal (i) 0.1 m	lity of the solut (ii) 1 M	tion containing 18.	25 g of HCl gas in 500 g c (iii) 0.5 m	of water? (iv) 1 m			
8.	One mole of any subs 100 mL of 0.02M H ₂ SO (i) 12.044 × 10 ²⁰ molec (iii) 1 × 10 ²³ molecules	stance contains a solution is cules	s 6.022 × 10 ²³ ato 	ms/molecules. Number ((ii) 6.022 × 10 ²³ (iv) 12.044 × 10	of molecules of H_2SO_4 present in molecules P^{23} molecules			
9.	What is the mass perce (i) 0.034%	ent of carbon i (ii) 27.27%	n carbon dioxide?	(iii) 3.4%	(iv) 28.7%			

A Responsible Education Management Company

10. The empirical formula molecular formula of	a and molecular mass of the compound?	a compound are CH_2O and 18	0 g respectively. What will be the
(i) C ₉ H ₁₈ O ₉	(ii) CH ₂ O	(iii) C ₆ H ₁₂ O ₆	(iv) C ₂ H ₄ O ₂
 If the density of a solu (i) 4.7g 	ition is 3.12 g mL ⁻¹ , the m (ii) 4680 × 10 ⁻³ g	nass of 1.5 mL solution in signific (iii) 4.680g	cant figures is (iv) 46.80g
 12. Which of the following (i) A molecule of a cordination (ii) A compound cannot (iii) A compound retait (iv) The ratio of atoms 	g statements about a con npound has atoms of diff ot be separated into its co ns the physical propertie s of different elements in	npound is incorrect? Ferent elements. Instituent elements by physical s of its constituent elements. a compound is fixed.	methods of separation.
 13. Which of the following 4Fe(s) + 3O₂(g) → 2Fe (i) Total mass of iron a of conservation of ma (ii) Total mass of react (iii) Amount of Fe₂O₃ c (iv) Amount of Fe₂O₃ p in excess. 	g statements is correct al 2O3(g) and oxygen in reactants = ss. cants = total mass of proc can be increased by takin produced will decrease if	bout the reaction given below: total mass of iron and oxygen i duct; therefore, law of multiple g any one of the reactants (iron the amount of any one of the re	n product therefore it follows law proportions is followed. or oxygen) in excess. eactants (iron or oxygen) is taken
14. Which of the following (i) $2Mg(s) + O_2(g) \rightarrow 2$ (iii) $P_4(s) + 5O_2(g) \rightarrow P_4$	g reactions is not correct MgO(s) ₄O10(s)	according to the law of conserv (ii) $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) +$ (iv) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) +$	ration of mass? H₂O(g) + 2H₂O(g)
 15. Which of the following (i) Sample of carbon d (ii) Carbon forms two carbon are in the sim (iii) When magnesium of magnesium in mag (iv)At constant tempe mL of water vapour. 	g statements indicates th ioxide taken from any so oxides namely CO ₂ and C ple ratio 2:1. burns in oxygen, the am nesium oxide formed. rature and pressure 200	at law of multiple proportion is urce will always have carbon an O, where masses of oxygen whi ount of magnesium taken for th mL of hydrogen will combine wi	being followed. Id oxygen in the ratio 1:2. ch combine with fixed mass of he reaction is equal to the amount ith 100 mL oxygen to produce 200
In the	Multiple Choice Ques following questions mo	tions (Type-II) re than one options may be co	rrect.
 16. One mole of oxygen g (i) 6.022 × 10²³ molect (iii) 16 g of oxygen 	as at STP is equal to ules of oxygen (ii) 6.0 (iv) 32	 D22 × 10 ²³ atoms of oxygen g of oxygen	
17. Sulphuric acid reacts $H_2SO_4 + 2NaOH \rightarrow Na$ When 1L of 0.1M sulp amount of sodium sul (i) 0.1 mol L ⁻¹	with sodium hydroxide as h ₂ SO ₄ + 2H ₂ O huric acid solution is allo phate formed and its mo (ii) 7.10 g	s follows : wed to react with 1L of 0.1M so larity in the solution obtained is (iii) 0.025 mol L ⁻¹	dium hydroxide solution, the ; (iv) 3.55 g

A Responsible Education Management Company 18. Which of the following pairs have the same number of atoms? (i) 16 g of $O_2(g)$ and 4 g of $H_2(g)$ (ii) 16 g of O_2 and 44 g of CO_2 (iii) 28 g of N_2 and 32 g of O_2 (iv) 12 g of C(s) and 23 g of Na(s) 19. Which of the following solutions have the same concentration? (ii) 0.5 mol of KCl in 200 mL of solution (i) 20 g of NaOH in 200 mL of solution (iii) 40 g of NaOH in 100 mL of solution (iv) 20 g of KOH in 200 mL of solution 20. 16 g of oxygen has same number of molecules as in (i) 16 g of CO (ii) 28 g of N₂ (iii) 14 g of N_2 (iv) 1.0 g of H_2 21. Which of the following terms are unitless? (i) Molality (ii) Molarity (iii) Mole fraction (iv) Mass percent 22. One of the statements of Dalton's atomic theory is given below: "Compounds are formed when atoms of different elements combine in a fixed ratio" Which of the following laws is not related to this statement? (i) Law of conservation of mass (ii) Law of definite proportions

(iii) Law of multiple proportions (iv) Avogadro law

III. Short Answer Type

- 23. What will be the mass of one atom of C-12 in grams?
- 24. What is the difference between molality and molarity?(1.99×10⁻²³g)
- 25. Calculate the mass percent of calcium, phosphorus and oxygen in calcium phosphate Ca₃(PO4)₂. (38.71%, 20%, 41.29%)
- 26. 45.4 L of dinitrogen reacted with 22.7 L of dioxygen and 45.4 L of nitrous oxide was formed. The reaction is given below:

 $2N_2(g) + O_2(g) \rightarrow 2N_2O(g)$

Which law is being obeyed in this experiment? Write the statement of the law?

- 27. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in whole number ratio.
 - (a) Is this statement true?
 - (b) If yes, according to which law?
 - (c) Give one example related to this law.
- 28. Hydrogen gas is prepared in the laboratory by reacting dilute HCl with granulated zinc. Following reaction takes place.

 $Zn+2HCl \rightarrow ZnCl_2+H_2$

Calculate the volume of hydrogen gas liberated at STP when 32.65 g of zinc reacts with HCl. 1 mol of a gas occupies 22.7 L volume at STP; atomic mass of Zn = 65.3 u (11.35 L)

CAREER BLITZ A Responsible Education Management Company

- 29. The density of 3 molal solution of NaOH is 1.110 g mL⁻¹. Calculate the molarity of the solution?(2.97 M)
- 30. Volume of a solution changes with change in temperature, then, will the molality of the solution be affected by temperature? Give reason for your answer

Chapter 2. Structure of Atom I. Multiple Choice Questions (Type-I)

- 1. Which of the following conclusions could not be derived from Rutherford's α -particle scattering experiement? (i) Most of the space in the atom is empty.
 - (ii) The radius of the atom is about 10^{-10} m while that of nucleus is 10^{-15} m.
 - (iii) Electrons move in a circular path of fixed energy called orbits.
 - (iv) Electrons and the nucleus are held together by electrostatic forces of attraction
- 2. Which of the following options does not represent ground state electronic configuration of an atom? (ii) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 4s^2$ (i) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2$ (iii) 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s¹ (iv) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
- 3. Which of the following statement is not correct about the characteristics of cathode rays? (i) They start from the cathode and move towards the anode.
 - (ii) They travel in straight line in the absence of an external electrical or magnetic field.
 - (iii) Characteristics of cathode rays do not depend upon the material of electrodes in cathode ray tube.
 - (iv) Characteristics of cathode rays depend upon the nature of gas present in the cathode ray tube.
- 4. Which of the following statements about the electron is incorrect? (i) It is a negatively charged particle. (ii) The mass of electron is equal to the mass of neutron. (iii) It is a basic constituent of all atoms. (iv) It is a constituent of cathode rays.
- 5. Which of the following properties of atom could be explained correctly by Thomson Model of atom? (i) Overall neutrality of atom. (ii) Spectra of hydrogen atom. (iii) Position of electrons, protons and neutrons in atom. (iv) Stability of atom.
- 6. The number of radial nodes for 3*p* orbital is _____ (iii) 2 (i) 3 (ii) 4 (iv)1
- 7. Two atoms are said to be isobars if.
 - (i) they have same atomic number but different mass number.
 - (ii) they have same number of electrons but different number of neutrons.
 - (iii) they have same number of neutrons but different number of electrons.
 - (iv) sum of the number of protons and neutrons is same but the number of protons is different
- 8. Number of angular nodes for 4*d* orbital is _____ (iii) 2 (i) 4 (ii) 3
- 9. Which of the following is responsible to rule out the existence of definite paths or trajectories of electrons? (i) Pauli's exclusion principle. (ii) Heisenberg's uncertainty principle.
 - (iii) Hund's rule of maximum multiplicity.
- (iv) Aufbau principle.

(iv) 1

LU.	Total	numbe	r of orbital	s associa	ated with third	shell will be			
-	(i) 2			(ii) 4		(iii) 9	(iv) 3		
1.	Orbita	al angul	ar momen	tum dep	ends on	·			
	(i) /			(ii) <i>n</i> an	d /	(iii) <i>n</i> and <i>m</i>	(iv) <i>m</i> a	and s	
2.	Chlori and C	ine exis I-35 is a	ts in two is approxima	otopic fo	orms, Cl-37 and	d Cl-35 but its ator	mic mass is 35.5	. This indicate	es the ratio of C
	(i) 1:2			(ii) 1:1		(iii) 1:3	(iv) 3:1		
13.	The p (i) Cr³	air of io ^{+,} Fe ³⁺	ons having	same ele (ii) Fe ³⁺	ectronic config , Mn ²⁺	uration is (iii) Fe ³⁺ , Co ³⁺	 (iv) Sc ³	^{+,} Cr ³⁺	
.4.	For th (i) Zef (ii) An (iii) Ze (iv) Th	e electi f for an electro eff for a ne two e	rons of oxy electron i on in the 2 n electron electrons p	gen ato n a 2s or s orbital in 1s orl present i	m, which of the bital is the san has the same e bital is the sam n the 2s orbita	e following statem ne as Zeff for an el energy as an electr e as Zeff for an ele l have spin quantu	nents is correct? ectron in a 2 <i>p</i> or ron in the 2 <i>p</i> or ectron in a 2 <i>s</i> or im numbers <i>ms</i>	rbital. bital. bital. but of opposi	te sign.
.5.	lf trav (i) Ele	elling a ctron	t same spe	eeds, wh (ii) Alpł	ich of the follo na particle (He ²	wing matter wave '*) (iii) Neu	es have the shor utron	test waveleng (iv)	th? Proton
			In the f	II. Mult ollowing	iple Choice Qu g questions tw	estions (Type-II) o or more options	s may be correc	t.	
6.	Identi	fv the r	pairs which	are not	of isotopes?				
L6.	Identi (i) ₆ X ²	ify the p ¹² , ₆ Y ¹³	bairs which	are not	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷		(iii) ₆ X ¹⁴ , ₇ Y ¹⁴		(iv) ₄ X ⁸ , ₅ Y ⁸
.6.	Identi (i) ₆ X ² Out o (i)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n	bairs which llowing pa	i are not irs of ele m= –2,	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$	y the pairs of elect (b) n = 3	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, I = 2, m = −1,	degenerate c s= - 1/2	$(iv)_4 X^8, \ _5 Y^8$ orbitals :
.6. .7.	Identi (i) ₆ X ² Out o (i) (ii)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n	llowing pa = 3, l = 2, = 3, l = 1,	irs of ele m= -2, m = 1,	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$	y the pairs of elect (b) n = 3 (b) n = 3	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = −1, 3, l = 2, m = 1,	degenerate c s= - 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
.6.	Identi (i) ₆ X ² Out o (i) (ii) (iii) (iy)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n	llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2.	irs of ele m= -2, m = 1, m = 1, m = +2.	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ectrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = −1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2.	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
.6.	Identi (i) ₆ X ² Out o (i) (ii) (ii) (ii) (iv)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n	llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2,	irs of ele m= -2, m = 1, m = 1, m = +2,	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ectrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = −1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
.6. .7.	Identi (i) ₆ X ² Out o (i) (ii) (iii) (iv) Which	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n	llowing pa = 3, I = 2, = 3, I = 1, = 4, I = 1, = 3, I = 2, following	irs of ele m = -2, m = 1, m = +2, sets of q	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$ uantum numb	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 ers are correct?	(iii) ${}_{6}X^{14}$, ${}_{7}Y^{14}$ trons present in 3, l = 2, m = -1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
.6. .7.	Identi (i) ₆ X ² Out o (i) (ii) (iii) (iv) Which (i)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n n of the n	bairs which llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2, following l 1	irs of ele m= -2, m = 1, m = 1, m = +2, sets of q m +2	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ectrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$ uantum numb	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 ers are correct?	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = −1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
	Identi (i) ₆ X ² Out o (i) (ii) (ii) (ii) (iv) Which (i) (ii)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n n of the n 1 2	bairs which llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2, following l 1 1	irs of ele m= -2, m = 1, m = 1, m = +2, sets of q m +2 +1	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$ uantum numb	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 ers are correct?	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = -1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
	Identi (i) ₆ X ² Out o (i) (ii) (ii) (iv) Which (i) (ii) (ii)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n (a) n 1 2 3	bairs which llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2, following l 1 1 2	irs of ele m= -2, m = 1, m = 1, m = +2, sets of q m +2 +1 -2	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$ uantum numb	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 ers are correct?	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = -1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
.6.	Identi (i) ₆ X ² Out o (i) (ii) (ii) (iv) Which (i) (ii) (ii) (ii) (iv)	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n 1 2 3 3 3	bairs which llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2, following l 1 1 2 4	irs of ele m= -2, m = 1, m = 1, m = +2, sets of q m +2 +1 -2 -2	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$ uantum numb	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 ers are correct?	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = −1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :
L6. L7.	Identi (i) ₆ X ² Out o (i) (ii) (ii) (iv) Which (i) (ii) (ii) (ii) (iv) In wh	fy the p ¹² , ₆ Y ¹³ f the fo (a) n (a) n (a) n (a) n n of the n 1 2 3 3 ich of th	bairs which llowing pa = 3, l = 2, = 3, l = 1, = 4, l = 1, = 3, l = 2, following l 1 1 2 4 me followir	irs of ele m = -2, m = 1, m = 1, m = +2, sets of q m +2 +1 -2 -2 ag pairs,	of isotopes? (ii) ₁₇ X ³⁵ , ₁₇ Y ³⁷ ctrons, identif $s = -\frac{1}{2}$ $s = +\frac{1}{2}$ $s = -\frac{1}{2}$ uantum numb	y the pairs of elect (b) n = 3 (b) n = 3 (b) n = 3 (b) n = 3 ers are correct?	(iii) ₆ X ¹⁴ , ₇ Y ¹⁴ trons present in 3, l = 2, m = −1, 3, l = 2, m = 1, 3, l = 2, m = 1, 3, l = 2, m = +2,	degenerate c s= - 1/2 s= + 1/2 s= + 1/2 s= + 1/2	(iv)₄X ⁸ , ₅Y ⁸ orbitals :

A Responsible Education Management Company

- 20. Which of the following statements concerning the quantum numbers are correct?
 - (i) Angular quantum number determines the three dimensional shape of the orbital.
 - (ii) The principal quantum number determines the orientation and energy of the orbital.
 - (iii) Magnetic quantum number determines the size of the orbital.

(iv) Spin quantum number of an electron determines the orientation of the spin of electron relative to the chosen axis.

III. Short Answer Type

- 21. Arrange *s*, *p* and *d* sub-shells of a shell in the increasing order of effective nuclear charge (Z_{eff}) experienced by the electron present in them.
- 22. Show the distribution of electrons in oxygen atom (atomic number 8) using orbital diagram.
- 23. Nickel atom can lose two electrons to form Ni2+ ion. The atomic number of nickel is 28. From which orbital will nickel lose two electrons.
- 24. Which of the following orbitals are degenerate? $3d_{xy}$, $4d_{xy}$, $3d_{yz}$, $4d_{yz}$, $3d_{z2}$, $4d_{z2}$
- 25. Calculate the total number of angular nodes and radial nodes present in 3*p* orbital.
- 26. Which of the following will not show deflection from the path on passing through an electric field? Proton, cathode rays, electron, neutron.
- 27. An atom having atomic mass number 13 has 7 neutrons. What is the atomic number of the atom?
- 28. Wavelengths of different radiations are given below : $\lambda(A) = 300 \text{ nm} \quad \lambda(B) = 300 \text{ }\mu\text{m} \quad \lambda(C) = 3 \text{ nm} \quad \lambda(D) = 30 \text{ }A^0$ Arrange these radiations in the increasing order of their energies.
- 29. The electronic configuration of valence shell of Cu is 3d¹⁰4s¹ and not 3d⁹4s². How is this configuration explained?
- 30. The Balmer series in the hydrogen spectrum corresponds to the transition from $n_1 = 2$ to $n_2 = 3,4$ This series lies in the visible region. Calculate the wave number of line associated with the transition in Balmer series when the electron moves to n = 4 orbit.(RH = 109677 cm⁻¹)

A Responsible Education Management Company

ANSWERS (chap-1) I. Multiple Choice Questions (Type-I) 1. (ii) 2. (iii) 3. (iii) 4. (ii) 5. (iv) 6. (iii) 7. (iv) 8. (i) 9. (ii) 10. (iii) 11. (i) 12. (iii) 13. (i) 14. (ii) 15. (ii) II. Multiple Choice Questions (Type-II) 16. (i), (iv) 17. (ii), (iii) 18. (iii), (iv) 19. (i), (ii) 20. (iii), (iv) 21. (iii), (iv) 22. (i), (iv)

ANSWERS(chap-2) I. Multiple Choice Questions (Type-I) 1. (iii) 2. (ii) 3. (iv) 4. (ii) 5. (i) 6. (iv) 7. (iv) 8. (iii) 9. (ii) 10. (iii) 11. (i) 12. (iii) 13. (ii) 14. (iv) 15. (ii) II. Multiple Choice Questions (Type-II) 16. (iii), (iv) 17. (i), (iv) 18. (ii), (iii) 19. (i), (iii) 20. (i), (iv)